Contributions to Image Processing For Medical Image Analysis

Roadmap

- General Presentation
 - Who am I?

- Research Activities
 - What are my contributions?

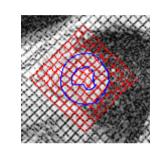
- Perspectives
 - What is my research project?

Roadmap

- General Presentation
 - Who am !?

- Research Activities
 - What are my contributions?

- Perspectives
 - What is my research project?



Certificate of Birth

- 4th Sept. 1977, Lyon
- Parents: B. Histace and D. Ferreyre-Histace

 CV

2001

MSc

- Signal and Image in Biology and Medecine
- University of Angers
- Wavelet Compression of Thoravision images (X)

PhD

- "Detection and tracking of structure in image sequences: application to tagged cardiac MR images"
- Mention: "Très Honorable avec les félicitations du jury"
- University of Angers

Industrial Systems Engineering

EIGSI La Rochelle

Master of Engineering

Professional Experience

2001 2004 2006 **2013** 28/11/14

PhD, "Moniteur"

Lecturer

Associate Professor (UCP, ETIS) PES

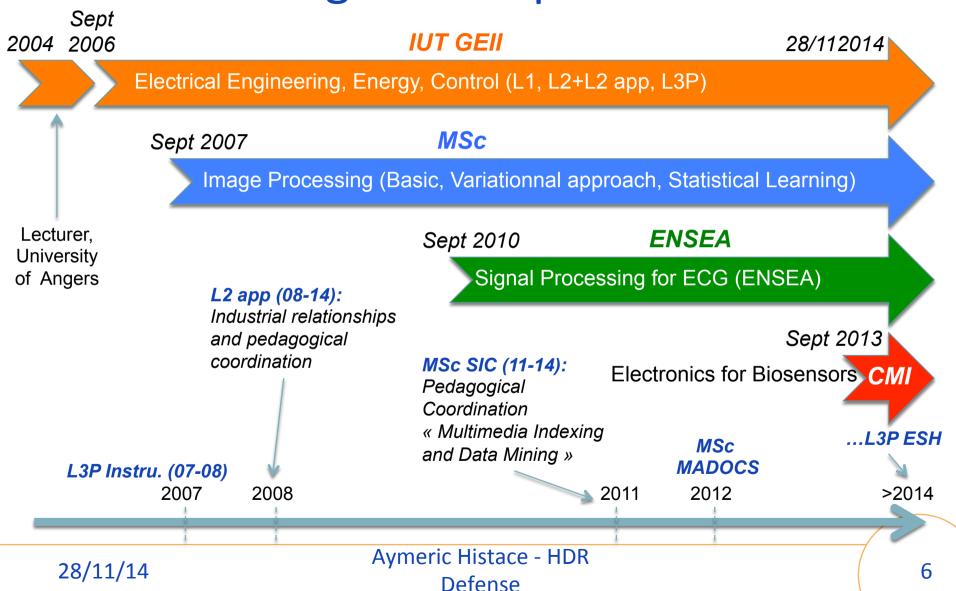
Research

- Member of ASTRE team
- In charge of the "Embedded Systems for Health" axis
- Elected Member of the Laboratory Council

TODAY

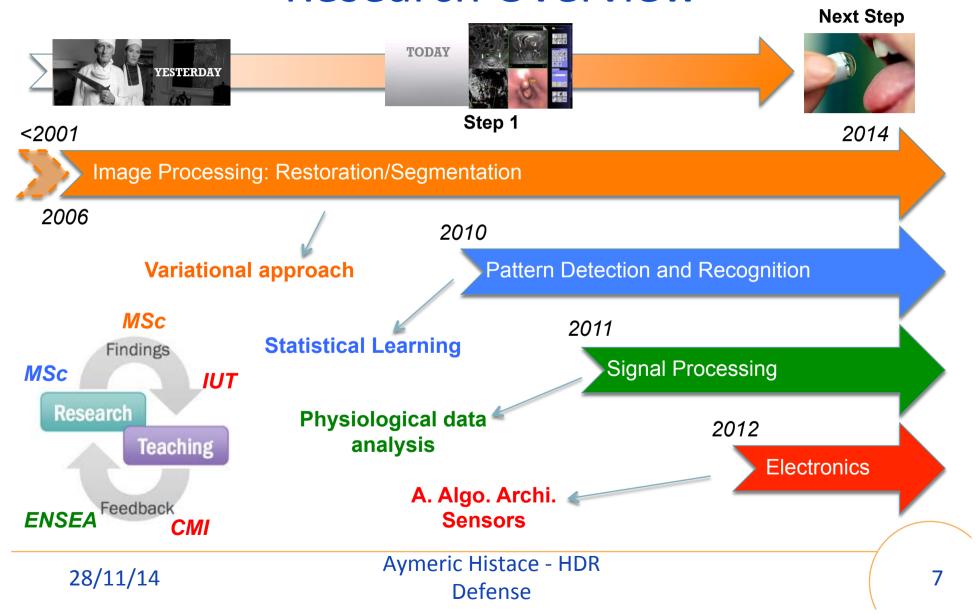
Administrative

 Co-Head of MSc MADOCS (Methods for Complexe Data Analysis)


Teaching

- Institute of Technology
- Dpt of Electrical Engineering and Industrial Informatic (GEII)
- Member of the "Commission de choix"

Aymeric Histace - HDR Defense


Who am I?

Teaching and Responsabilities

Research Overview

Involvement on Projects

Leader

TERAFS (09-11) •

Laser Confocal Imaging of Cells for Study of Radiotherapy Insult

SIMBAD (08-...) ●

Biomedical Image Segmentation for CAD

Cyclope (11-...) •••

Smart Videoendoscopy for CRC early-diagnosis

TRAPIL (10-14)

Automatic Detection of Default in Pipelines Using Ultrasonic Images

- International (EPSRC, AUF)
- National (CNRS)
- Regional, Local (FUI, ENSEA, UCP)
- Industrial (SATT, CIFRE, Subcontract)

Technological Transfer

Partner

ECSON (07-09)

Oncology Network of Competences

FibroSES, iFib (2013-...) ••

In Vivo and In Vitro Electric Characterization of Fibrosis Induced by Electronic Implant

SmartEEG (13-...) •••

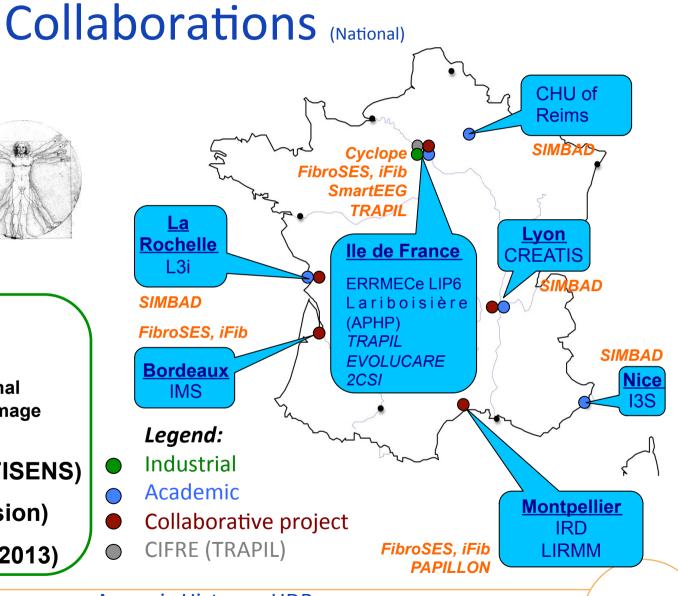
Smart Mobile System for ExG Signals Acquisition and Analysis

PAPILLON (14-...)

On-line Characterization of Dypters using Image Processing

8 Labs 2 Hospitals 3 Companies

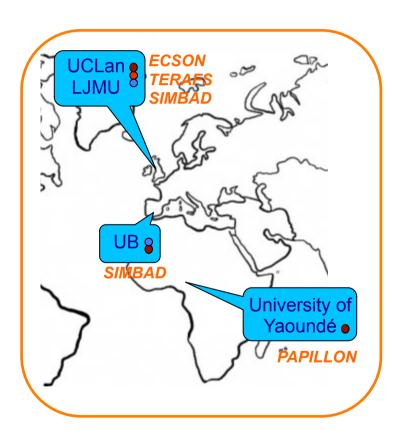
GDR ISIS/SOC-SIP:


6 Projects

- Sensors and SIP (2012)
- Statistical and Variationnal approaches in Medical Image Analysis (2013)

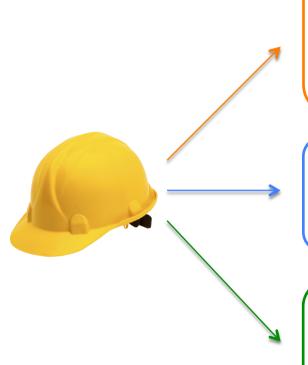
BioniCamp 2012 (DEFISENS)

DCIS'12 (Special Session)


GEODIFF Workshop (2013)

Collaborations (International)

- **3 Countries**
- 4 Universities
- **4 Projects**
- ECSON
- TERAFS
- SIMBAD
- PAPILLON
- 3 Student Exchanges
- 2 Special Sessions (ECSMIO10, ICIP11)
- **1 Workshop** (BioSan14)


1 joint PhD

Legend:

- Collaborative projects
- Guest
- Host

Supervising

4 PhD students: 120%+80%

- 2 Defended (11/2013, 06/2014)
- 2 just started
 - Cyclope (50%, 2014-2017)
 - PAPILLON (30%, Yaounde, 2014-2017)

7 MSc students: 400%

- MSc SIC
- MSc ESA), SESI (UPMC)

Others:

- 1 Post-doc (50%-1 year)
- 1 Research Engineer (50%)
- Several Initiation-to-Research projects

Roadmap

- General Presentation
 - Who am !?

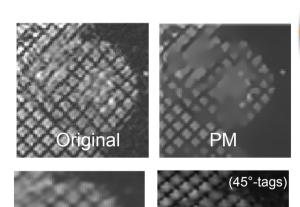
- Research Activities
 - What are my contributions?

- Perspectives
 - What is my research project?

PhD

(Tagged Cardiac MRI)

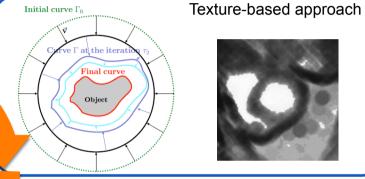
Quantification of LV contraction

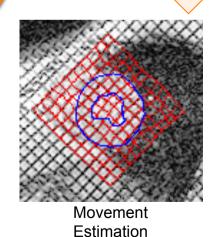


PhD (Tagged Cardiac MRI)

PDE-based Image Restoration

$\frac{\partial I}{\partial t} = (\nabla - A).(\nabla - A)I$


A is a prior vector field taking into account the gradient orientation to restore or not



Proposed

Active Contour Segmentation

Quantification

Weickert

Main Questions

Question 1

Can we profit in an original way from the **non-linearity** of the usual **divergence-based** PDE?

$$\frac{\partial I}{\partial t} = div \Big(g \big(\big\| \nabla I \big\| \big) \nabla I \Big)$$

Question 2

Can we profit from the prior knowledge we have in medical image analysis (shape, texture, noise, etc.)?

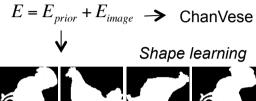
Question 3

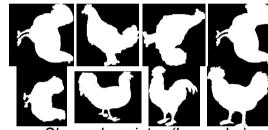
Can we propose
CAD methods
compatible with
embedding
constraints?

CAD: Main Contributions

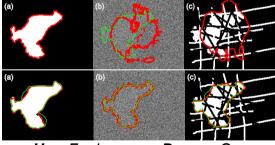
Stochastic Resonance Non-Linear PDE

$$\frac{\partial I}{\partial t} = div \Big(g_{\eta} \big(\big\| \nabla I \big\| \big) \nabla I \Big)$$

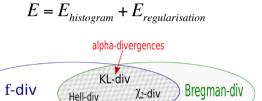


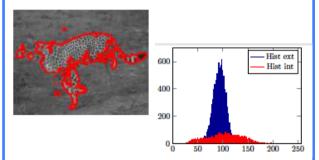


$$g_{\eta}(u) = g(u + \eta(x, y))$$
 Gaussian Noise


Coll. CREATIS
David Rousseau

Active Contour With Shape Prior


Shape descriptor (Legendre)



Up : Foulonneau, **Down :** Our Approach **Coll. UCLan**

B. Matuszewski

Alpha-Divergence Based Active Contour

Joint Optimization:

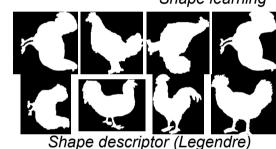
- -Segmentation Process
- -Metric of the divergence

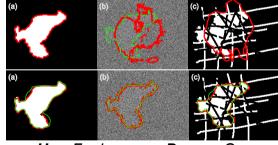
Coll. I3S PhD Leila Meziou

CAD: Main Contributions

Stochastic Resonance Non-Linear PDE

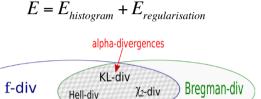
$$\frac{\partial I}{\partial t} = div \Big(g_{\eta} \big(\| \nabla I \| \big) \nabla I \Big)$$

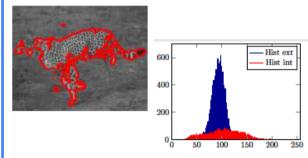



 $g_{\eta}(u) = g(u + \eta(x, y))$ Gaussian Noise

Coll. CREATIS
David Rousseau

Active Contour With Shape Prior



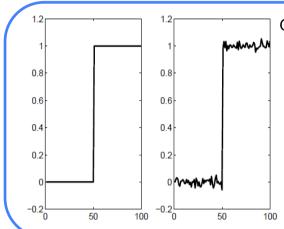


Up : Foulonneau, **Down** : Our Approach **Coll. UCLan B. Matuszewski**

Alpha-Divergence Based Active Contour

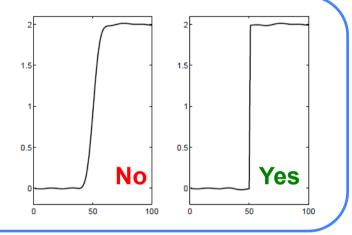


Joint Optimization:


- -Segmentation Process
- -Metric of the divergence

Coll. I3S PhD Leila Meziou

Stochastic Resonance


Application to Image Restoration

Gaussian noise

Objectives:

- Noise reduction
- Contour integrity

Method

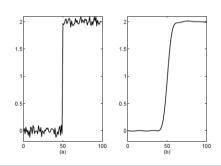
$$\begin{cases} I(x, y, 0) = I_0 \\ \frac{\partial I}{\partial t} = div \Big(g_{\eta} \big(\|\nabla I\| \big) \nabla I \Big) \end{cases}$$

with

$$g_{\eta}(u) = g(u + \eta(x, y))$$

Stochastic Variant of Perona-Malik process

- η a noise assumed independent and identically distributed (rms amplitude σ_{η})
- g a decreasing monotonic function

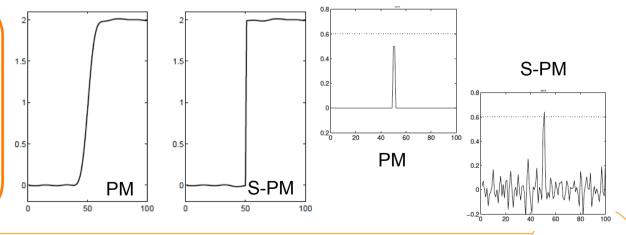

Experiment 1

$$g_{\eta}(u) = g(u + \eta(x))$$
 with

$$g(s) = \begin{cases} 1 & \text{if } s \ge k \\ 0 & \text{if } s < k \end{cases}$$

Hard-threshold

We consider a case where *k* parameter is badly tuned regarding PM approach :

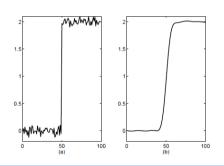


(left) Original noisy contour

(right) Restored one using PM approach with k=0.6

Result

Purposely injection of η noise in g function can randomly retune the function

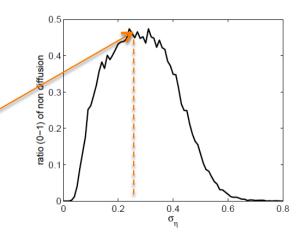

Experiment 2

$$g_{\eta}(u) = g(u + \eta(x))$$
 with

$$g(s) = \begin{cases} 1 & \text{if } s \ge k \\ 0 & \text{if } s < k \end{cases}$$

Hard-threshold

We consider a case where *k* parameter is badly tuned regarding PM approach :


(left) Original noisy contour

(right) Restored one using PM approach with k=0.6

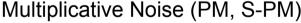
Result (Quantification)

Variation of the ratio of well restored function of the noise rms amplitude (1000 attempts).

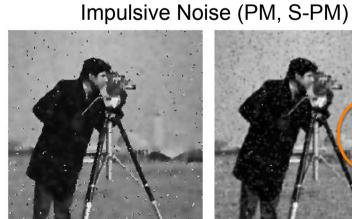
The non-diffusion ratio is maximum for a non zero amount of noise

Extension to image restoration

$$\begin{cases} I(x, y, 0) = I_0 \\ \frac{\partial I}{\partial t} = div \Big(g_{\eta} \Big(\big\| \nabla I \big\| \Big) \nabla I \Big) \end{cases}$$


with
$$g_{\eta}(u) = g(u + \eta(x, y))$$
 and
$$g(u) = e^{-\frac{\|u\|^2}{k^2}}$$

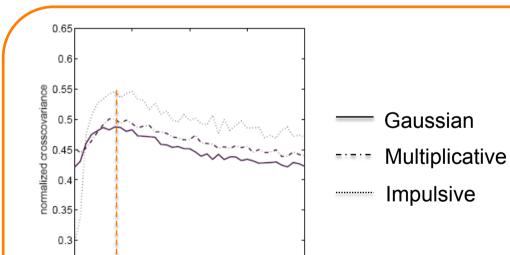
Gaussian Noise (PM, S-PM)



Multiplicative Noise (PM, S-PM)

28/11/14

Aymeric Histace - HDR Defense


In Details: Stochastic Resonance

Useful Noise Effect

Result (quantification)

Normalized Cross Covariance wrt the amount of injected noise (1000 attempts)

injected noise rms amplitude σ_n

Question 1: Answer

In each case the similarity measure is maximum for a non-zero amount of injected noise

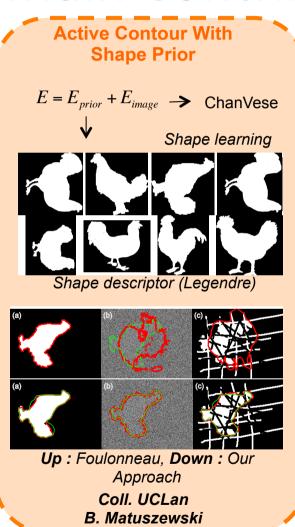
Elec. Letters 2006, PSIP 2007, IEEE SocPar 2010, Int Journal of Comp .Infor. Systems and Industrial Management 2012

0.25L

CAD: Main Contributions

Stochastic Resonance Non-Linear PDE

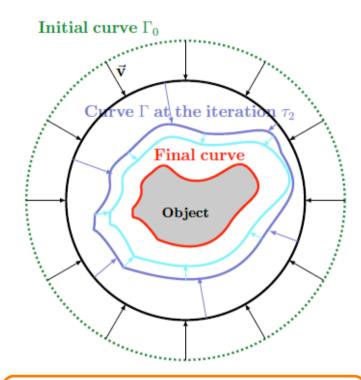
$$\frac{\partial I}{\partial t} = div \Big(g_{\eta} \big(\big\| \nabla I \big\| \big) \nabla I \Big)$$



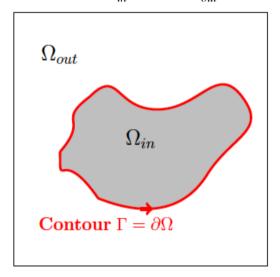
$$g_{\eta}(u) = g(u + \eta(x, y))$$
 Gaussian Noise

Coll. CREATIS
David Rousseau

Alpha-Divergence Based Active Contour $E = E_{histogram} + E_{regularisation}$ alpha-divergences KL-div f-div Bregman-div χ₂-div Hell-div Hist int 50 100 150 200 Joint Optimization: -Segmentation Process -Metric of the divergence Coll. 13S


PhD Leila Meziou

In Details: Segmentation


Active Contours

Principle

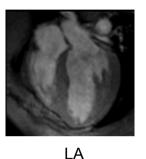
$$\min \left(E_{\textit{image}} + E_{\textit{regularisation}} + \ldots \right)$$

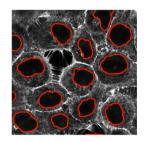
$$\Omega = \Omega_{in} \cup \Gamma \cup \Omega_{out}$$

Gradient-based approach:

$$E(\partial \Omega) = \int_{\partial \Omega} k_b(x, y) ds$$

Region-based approach:


$$E(\Omega_i) = \int_{\Omega} k_b(x, y, \Omega_i) ds$$

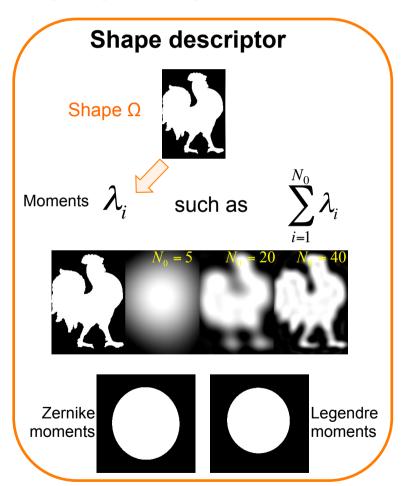

Main Idea

- In Medical Image, the shape of the structure to segment is often "known"
- Question: Knowing the "mean" shape of an object, can we integrate it in an AC segmentation process?

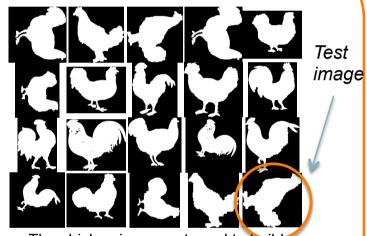
Cardiac MRI

Microconfocal images

X-Ray Radiography (hip bone)


Proposal

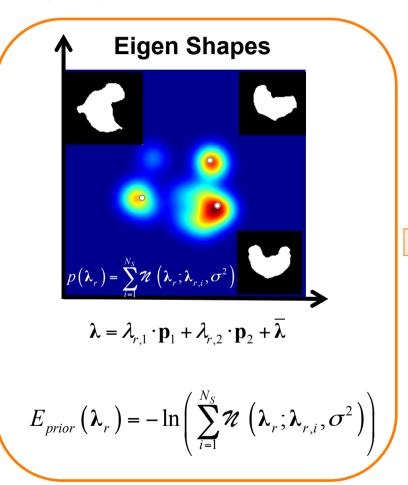
$$E(\lambda_r) = E_{prior}(\lambda_r) + E_{image}(\lambda_r)$$

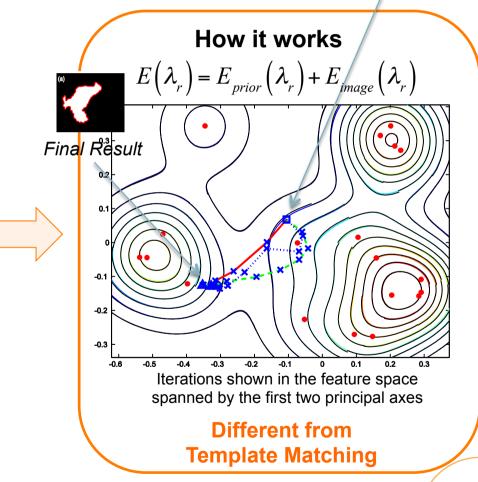

with λ_r a reduced shape descriptor (statistical learning)

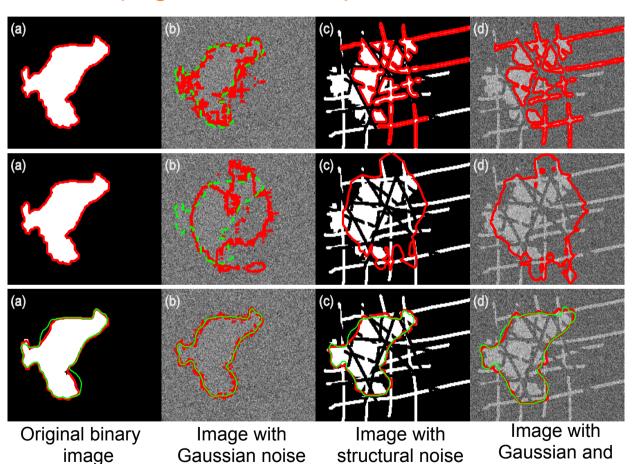
Shape Space Representation

Statistical Learning (PCA)

The chicken image set used to build the statistical shape model


$$\overline{\lambda} = \frac{1}{N_S} \sum_{i=1}^{N_S} \lambda_i \ \mathbf{Q} = \frac{1}{N_S} \sum_{i=1}^{N_S} (\lambda_i - \overline{\lambda}) (\lambda_i - \overline{\lambda})^T$$

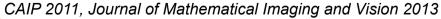

$$\lambda_{r,i} = \mathbf{P}^T \left(\lambda_i - \overline{\lambda} \right)$$

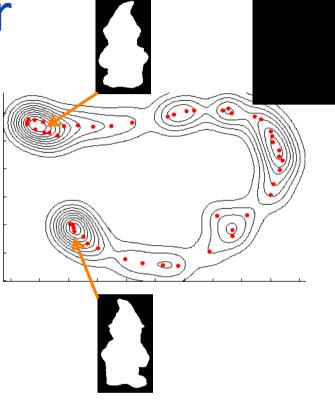

Shape Space of Moments

Results 1 (Legendre Moments)

Chan-Vese method

Multi-reference shape prior method (Foulonneau 09)


The proposed method


structural noise

Results 2

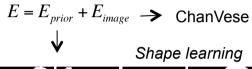
Question 2: Answer 1

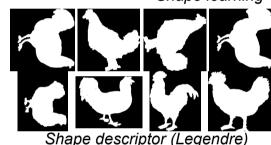
Space Shape of Legendre
Moments makes possible Shape
Prior integration different from
template matching

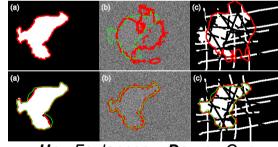
CAD: Main Contributions

Stochastic Resonance Non-Linear PDE

$$\frac{\partial I}{\partial t} = div \Big(g_{\eta} \big(\big\| \nabla I \big\| \big) \nabla I \Big)$$

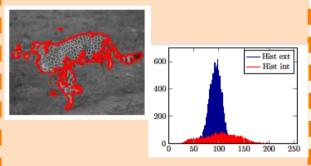





$$g_{\eta}(u) = g(u + \eta(x, y))$$
 Gaussian Noise

Coll. CREATIS
David Rousseau

Active Contour With Shape Prior

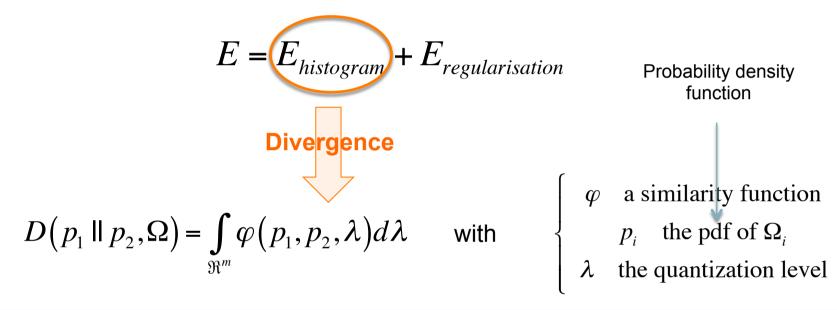

Up : Foulonneau, Down : Our Approach Coll. UCLan B. Matuszewski

Alpha-Divergence Based Active Contour

 $E = E_{histogram} + E_{regularisation}$

alpha-divergences

f-div KL-div X2-div Bregman-div



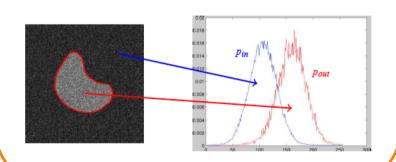
Joint Optimization:

- -Segmentation Process
- -Metric of the divergence

Coll. I3S PhD Leila Meziou

Histogram-Based Active Contour

Questions:


- How to model the pdf p_i (derivation constraints)?
- Which φ function?

Histogram-Based Active Contour

pdf modeling (Parzen Window)

$$\hat{p}_i(\lambda, \Omega_i) = \frac{1}{|\Omega_i|} \int_{\Omega_i} g_{\sigma}(I(\mathbf{x}) - \lambda) d\mathbf{x}$$

with g_{σ} a Gaussian kernel of variance σ

Divergence

Usually

- Kullback-Leibler
- Hellinger
- Ki²

Our proposa

Alpha-dive ç ce

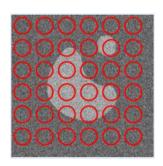
$$\varphi_{\alpha}(p_{1}, p_{2}, \lambda) = \frac{\alpha p_{1} + \beta p_{2} - p_{1}^{\alpha} p_{2}^{1-\alpha}}{\alpha (1-\alpha)}, \quad \alpha \in \mathbb{R} \setminus \{0, 1\}$$

$$p_{2} = \frac{p_{2}}{p_{1}} + p_{1} - p_{2}, \qquad \alpha = 0$$

$$\ln\left(\frac{p_{1}}{p_{2}}\right) - p_{1} + p_{2}, \qquad \alpha = 1$$

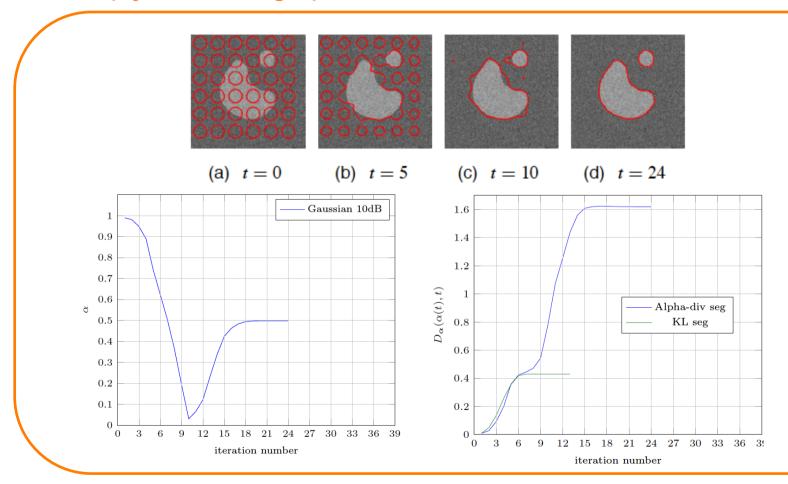
Joint Optimization

Maximization of the divergence

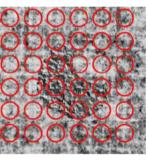

$$\operatorname{argmax}_{\Gamma} ig(D_{lpha} ig(p_{in} \, \| \, p_{out}, \Omega ig) ig)$$

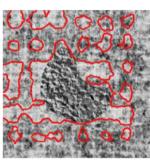
Optimization of alpha-parameter

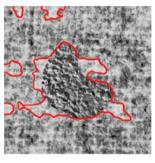
$$\operatorname{argmax}_{\alpha} \left(D_{\alpha} \left(p_{in} \parallel p_{out}, \Omega \right) \right)$$

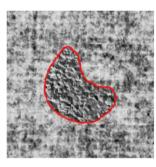


$$\begin{cases} \frac{\partial \alpha}{\partial t} = -\partial D_{\alpha} \left(p_{in} \parallel p_{out}, \alpha \right) \\ \frac{\partial \Gamma}{\partial t} = -\partial_{p_{in}, p_{out}} D_{\alpha} \left(p_{in} \parallel p_{out}, \alpha \right) \end{cases}$$

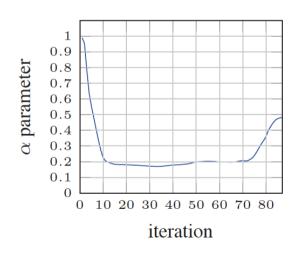

Algorithm

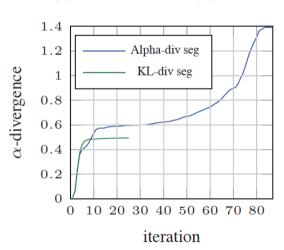

1.
$$\alpha_{t+1} (\alpha_{init} = 1)$$


Result 1 (Synthetic images)

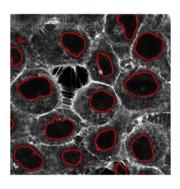


Result 2 (Synthetic images)



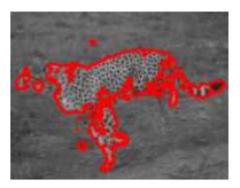


- (a) Initialization
- (b) $\tau = 5$, KL
- (c) $\tau = 50$
- (d) Final contour


Alpha-divergence

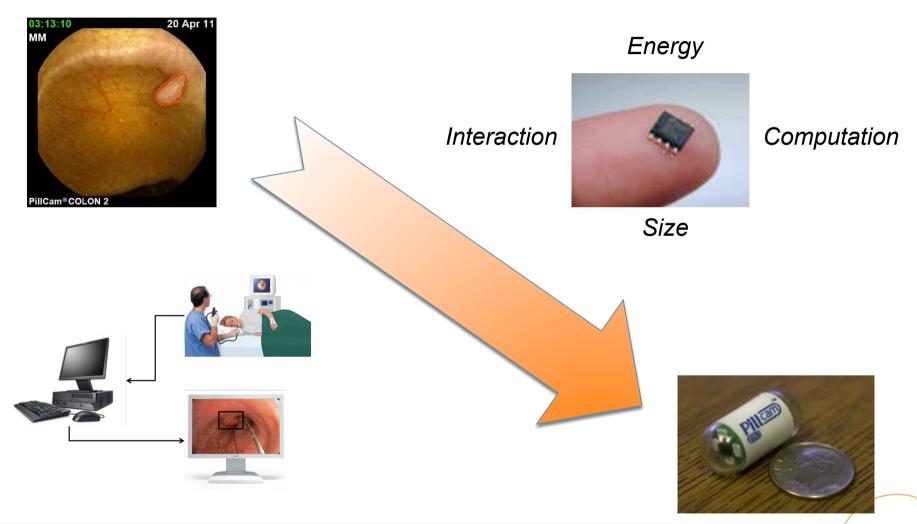
Result 3 (Natural Images)

Microconfocal images of cells


Question 2: Answer 2

Alpha-divergence are a flexible tool to cop with different noise scenarios in medical image analysis (but not only)

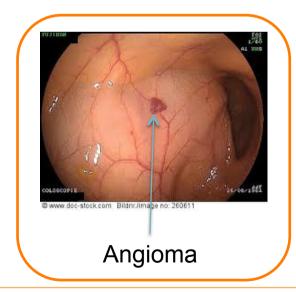
Videocapsule (coloscopy)

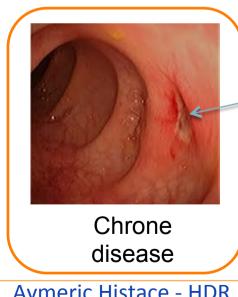


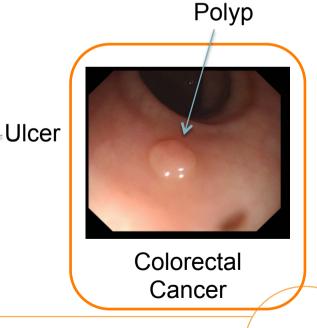
X-Ray images

ICIP 2011, ICASSP 2012, MIUA 2012 (Best Student Paper Award), Annals of BMVA 2013, ICIP 2014

CAD to in situ Diagnosis




Cyclope Project


Main idea (induced by Question 3)

To develop a smart autonomous videocapsule with embedded image processing capabilities

In situ detection of intestinal pathologies

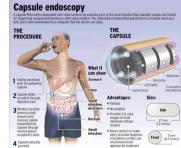
28/11/14

Aymeric Histace - HDR Defense

Cyclope Project

Main idea (induced by Question 3)

To develop a smart autonomous videocapsule with embedded image processing capabilities


Context

Colorectal Cancer

polyp

Advantages

- Total control
- Possibility of biopsy's
- Real-time analysis

Drawbacks

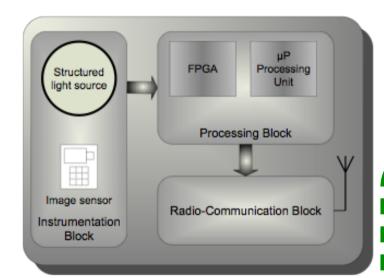
- Anaesthesia
- Hospitalization

Advantages

- Painless
- No sedation
- No hospitalization
- Just swallow it!

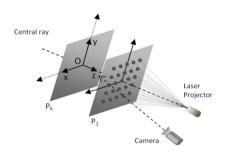
Drawbacks

- Battery life
- Low resolution
- No control
- ~150k images

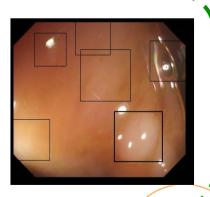

Aymeric Histace - HDR Defense

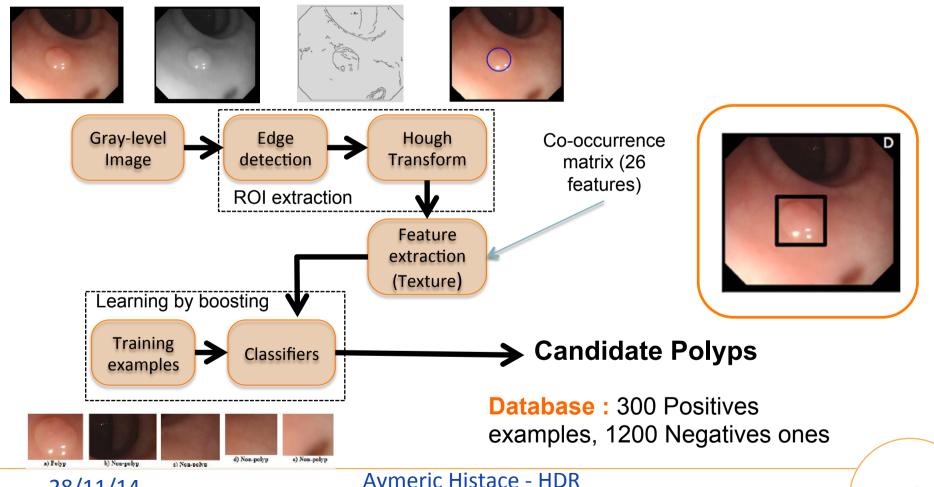
The Cyclope Pill

A Multispectral WCE



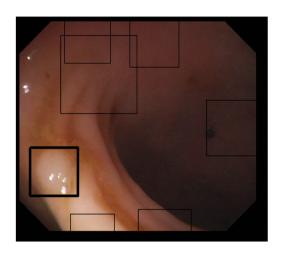
Infrared (Active Stereo Vision)

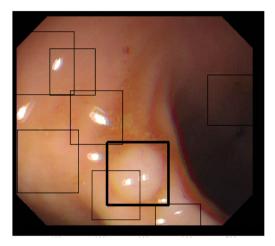

3D feature-based detection

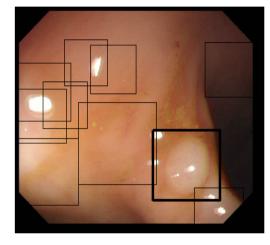

2D feature based detection

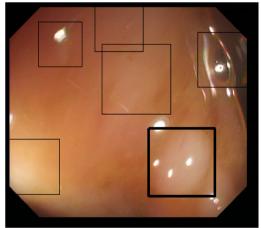
2011->2014: The Cyclope Project

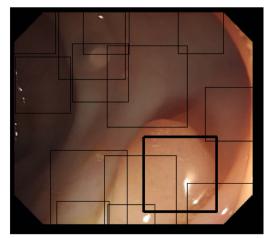
2D Detection (Compatible

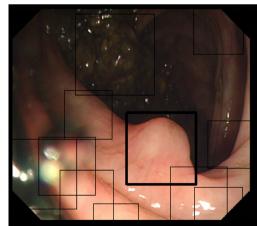

With Embedding Constraints)

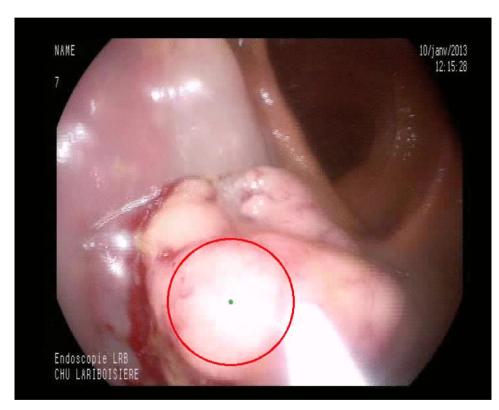





2D Detection

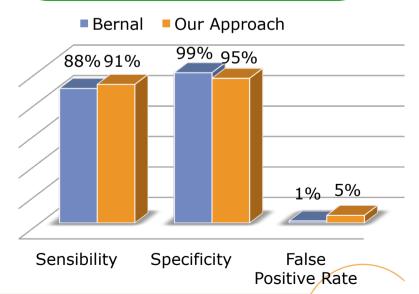

Results and Performance




28/11/14

Aymeric Histace - HDR Defense

2D Detection


Results and Performance (Real Time Tracking)

DCIS 2012, IEEE EMBC 2013, GRETSI 13, International Journal of Computer Assisted Radiology and Surgery, 2014

Question 3: Answer

It is possible to design low complexity detection/recognition algorithms in accordance with:
(i) embedding constraints, and
(ii) expected performance

Synthesis of contributions

2005

From CAD...

...to in situ Diagnosis

Question 1

- Stochastic Resonance
- Non-linear PDEbased image restoration process
- Double Well potential

Question 2

Active contour with:

- Shape Space moments
- Alphadivergence
- Fractional entropy

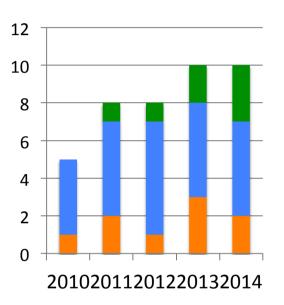
Question 3

- Early Detection of Colorectal Cancer
- Real-Time tracking of colonic polyps
- In Situ
 Diagnosis

Related Publications (2006-2014)

9 Journals, 1 Patent:

PRL*, JMIV*, EL*, IJCARS*+, IJBI+, Annals of BMVA,...



28 Int. Conferences:

ICIP, ICASSP, CAIP, EMBC, MIUA, CARS,...

3 Book Chapters, 1 Book Editing, 1 Proceeding Editing, 6 National Conferences (GRETSI)

- Journals, Patents
- Inter. Conf.
- Others

^{*} Indexed by JCR

[†] Indexed by PubMed

Roadmap

- General Presentation
 - Who am !?

- Research Activities
 - What are my contributions?

- Perspectives
 - What is my research project?

Research Activities-Evolution

...and The Story Does Not End

Research Project

(Short and Mid Terms)

Image Processing / Pattern recognition Electronics, Embedded Systems

Alpha-Divergence in Pattern Detection

 Collaboration with D. Rousseau (CREATIS Lyon)

Smart-Videoendoscopy

- PhD of Quentin Angermann
- SATT
- Evolucare Medical Imaging

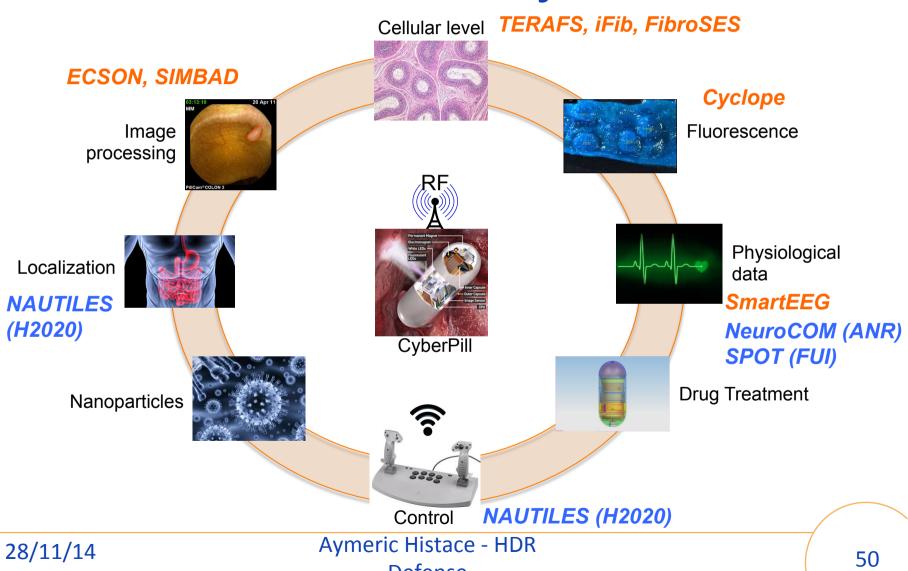
Cell shape characterization

Collaboration with UCLan and UB

Electrical Characterization of Fibrosis Induced by Implants

IMS, INL, LIP6, ERRMECe

Smart EEG


LIP6, INL, SME

Cyclope

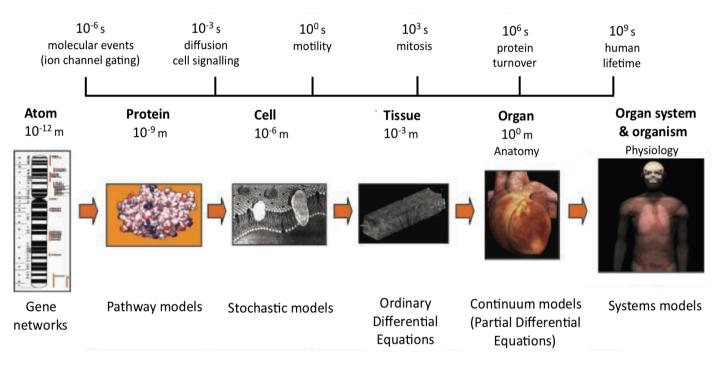
 H2020 Project (Greece, Switzerland, UK, Spain, France, Belgium)

Research Project

THANKS TO THEM

Q. Angermann (2014-...), C. Azib (2013), E. Bonnefoye (2012), M. Breuilly (2009), N. Cazin (2014), M. Degaudez (2007), M.-C. Desseroit (2013), H. Diouane (2014), C. Fouquet (2011-2014), M. Garnier (2009, 2011), C. Georgel (2013), M. Ibouchichene (2014), A. Izard (2013), L.-A. Latchimy (2013), T. Longret (2013), L. Meziou (2010-2013), S. Mouzai (2014), C. Nzuzi (2013), M. Rémignon (2014), A. Riaz (2013), H. Saidi (2014), J. Silva-Quintero (2012), A. Sittadannam (2014), Y. Zhang (2009-2010).

THANK YOU FOR YOUR ATTENTION



Research Project

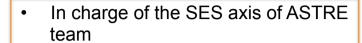
From Nano to Macro

Mathematics

Biology

Imaging Technic

Signal and Image Processing


Electronic

To understand manifestations of a same pathologic phenomenon from cell to organ scales (even nano) and draw some possible connections

- Elected member of the Research Council of ETIS
- Co-head of MSc MADOCS
- Different types of experiences (IUT, UCP)

Synthesis

- 8 research projects
- Active inter. and Nat. Collaborations
- · 8 Journal papers, 28 Int. Conf.
 - 2 defended PhD, 2 on-going

Administrative Research

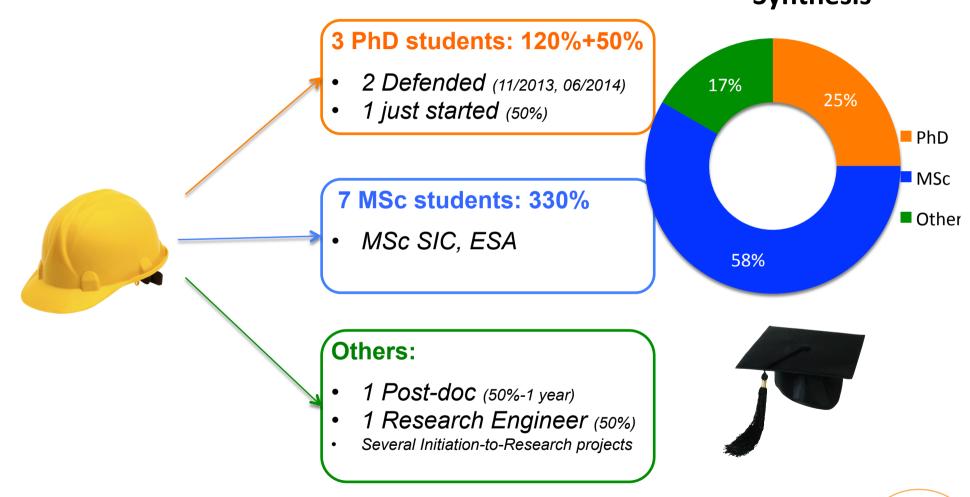
- L1, L2, L3, MSc, ENSEA
- Interaction Teaching/ Research
- In charge of the industrial relationship (2008-2014)

Teaching

2006-2014

And what about the future now?

Today-Teaching


Neuville Intitute of Technology, UCP, ENSEA

Students	Classes	Lecture and Tuto (h)	Labs (h)
1 st year (L1)	Electrical Engineering and Energy	32	
2 nd year (L2)	Electrical Engineering and Energy		48
2 nd year (L2)	Control Theory	28	
2 nd year App. (L2)	Control Theory	54	32
Prof. Licence (L3)	Electrical Engineering and Energy	30	
MSc SIC	Image Processing	15	
MSc MADOCS	Statistical Learning	6	
ENSEA 3rd year (EIB)	Signal Processing for ECG	6	
Total		171	80

Today-Supervising

Theory (particular case)

$$g_{\eta}(u) = g(u + \eta(x))$$

 g_n : a static or memory less non-linear function

with

Shaping by noise of the input-output characteristic:

$$g(s) = \begin{cases} 1 & \text{if } s \ge k \\ 0 & \text{if } s < k \end{cases}$$


Hard-threshold

$$g_{eff}(s) = E\left[g\left(s + \eta(x, y)\right)\right] = \int_{-\infty}^{+\infty} g(u)f_{\eta}(u - s)du$$

 $f_{\eta}(u)$: pdf of purposely injected noise (uniform)

Experiment 1

Comparison between real stochastic diffusion process and theoretical one.

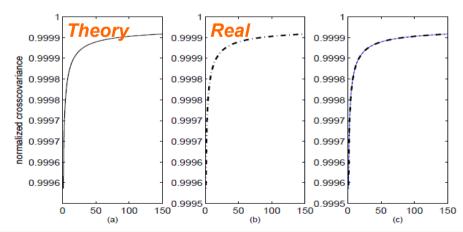
Theory (particular case)

$$g_{\eta}(u) = g(u + \eta(x))$$

 $oldsymbol{g}_{\eta}$: a static or memory less non-linear function

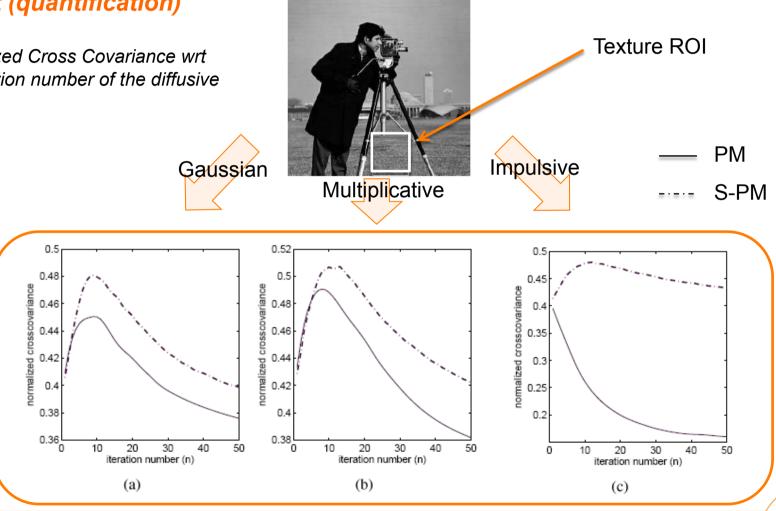
with

Shaping by noise of the input-output characteristic:


$$g(s) = \begin{cases} 1 & \text{if } s \ge k \\ 0 & \text{if } s < k \end{cases}$$

 $g_{eff}(s) = E\left[g\left(s + \eta(x, y)\right)\right] = \int_{-\infty}^{+\infty} g(u)f_{\eta}(u - s)du$

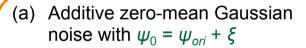
Hard-threshold


Experiment 2

Comparison of the evolution of normalized cross-covariance (1000 attempts)

Result (quantification)

Normalized Cross Covariance wrt the iteration number of the diffusive process



Extension to Image Restoration

$$\begin{cases} I(x, y, 0) = I_0 \\ \frac{\partial I}{\partial t} = div(g_{\eta}(\|\nabla I\|)\nabla I) \end{cases}$$

with
$$g_{\eta}(u) = g(u + \eta(x, y))$$

and $g(u) = e^{-\frac{\|u\|}{k}}$

- (b) Multiplicative Gaussian noise of mean unity with $\psi_0 = \psi_{ori} + \xi$. ψ_{ori}
- (c) Impulsive noise
- (d) Original image

(b)

(c)

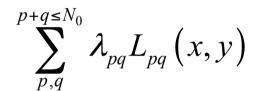
(d)

Shape Prior

Shape Space of Legendre Moments

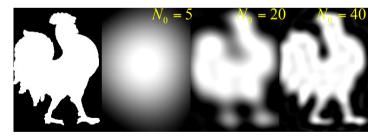
Legendre Moments

$$\lambda_{qp} = \frac{1}{|\Omega|} \int_{\Omega} L_{pq}(x, y, \Omega) dx dy$$


with

$$L_{pq}(x, y, \Omega) = L_p \left(\frac{x - \overline{x}}{|\Omega|^{1/2}} \right) L_q \left(\frac{y - \overline{y}}{|\Omega|^{1/2}} \right)$$

$$L_n(x) = \sqrt{\frac{2n+1}{2}} \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right]$$

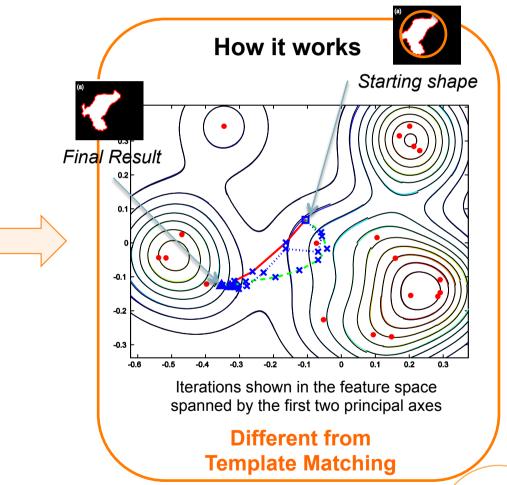


Reconstruction

Images reconstructed from the Legendre moments for different moments' order N_{o}

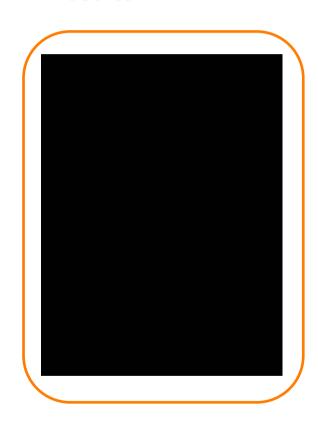
Shape Prior

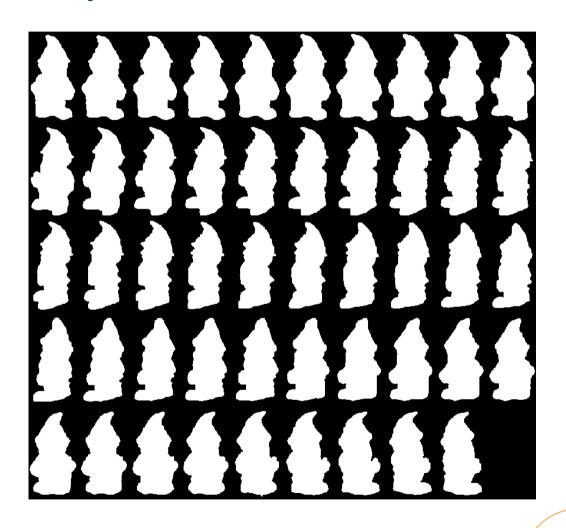
Shape Space of Legendre Moments


Greedy algorithm

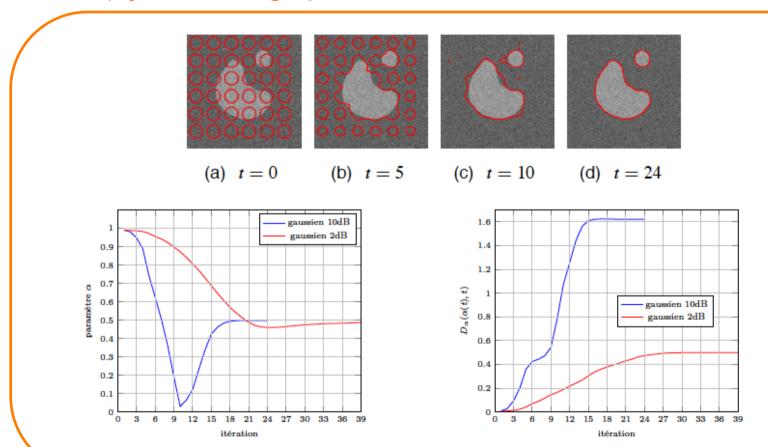
$$\begin{split} \bullet \Omega^{(k)} &\to \Omega'^{(k)} \\ &\frac{\partial \varphi}{\partial t} = \left(\left(I - \mu_{\Omega} \right)^2 + \left(I - \mu_{\Omega^c} \right)^2 \right) \left| \nabla \varphi \right| \\ &+ \gamma \nabla \left(\frac{\nabla \varphi}{\left| \nabla \varphi \right|} \right) \left| \nabla \varphi \right| \end{split}$$

$$\begin{split} \bullet \lambda_r^{(k)} &\to \lambda_r^{\prime(k)} \\ \lambda_r^{\prime(k)} &= \lambda_r^{(k)} - \beta \left. \frac{\partial E_{prior}}{\partial \lambda_r} \right|_{\lambda_r - \lambda_r^{(k)}} \end{split}$$

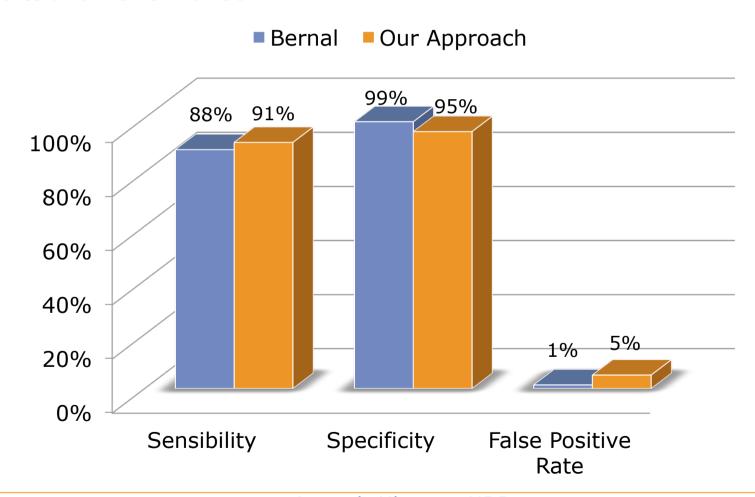

$$\begin{split} \bullet \boldsymbol{\lambda}_{r}^{\prime(k)} &\to \boldsymbol{\Omega}^{(k+1)} \\ \boldsymbol{\Omega}^{(k+1)} &= \\ \left\{ \left(\boldsymbol{x}, \boldsymbol{y} \right) : \left(\sum_{p,q}^{p+q \leq N_0} \boldsymbol{\lambda}_{pq}^{\prime(k)} L_{pq} \left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\Omega}^{\prime(k)} \right) \right) > 0.5 \right\} \end{split}$$

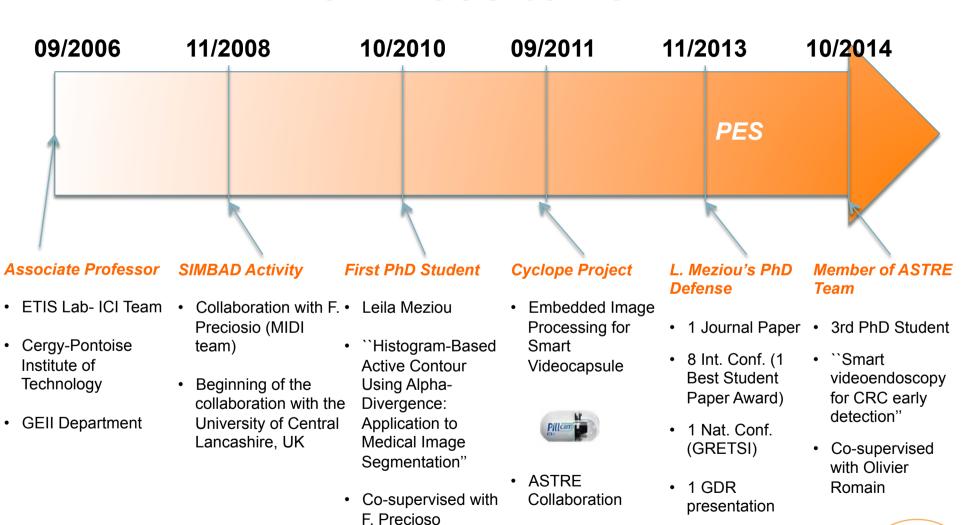


Shape Prior

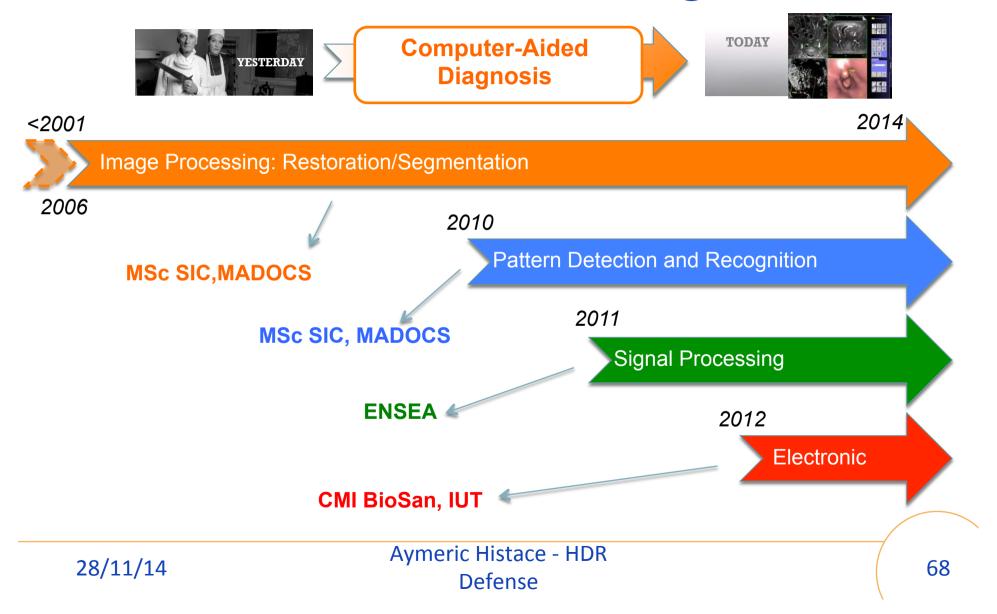

Results 2

Alpha-divergence


Result 1 (Synthetic images)


2D Detection

Results and Performance



From 2006 to 2014

Research/Teaching

8 Research Projects

(2006-...)

Local` (UCP. ENSEA, Region)

International

ECSON (07-09)

Oncology Network of Competences *(partner)*

EPSRC

TERAFS (09-11)

Laser Confocal Imaging of Cells for Study of Radiotherapy Insult (WP co-Leader)

PAPILLON (14-...)

On-line Characterization of Dypters using Image Processing (partner)

BQR, Scientific Council

SIMBAD (08-...)

Biomedical Image
Segmentation for CAD
(Leader)
National

Cyclope (11-...)

Smart
Videoendoscopy for
CRC early-diagnosis
(Leader)
BQR, Doctoral School,
SATT

FibroSES, iFib (2013-...)

In Vivo and In Vitro Electric
Characterization of Fibrosis Induced by
Electronic Implant
(WP Leader)
CNRS DEFISENS

UCP Fundation

LE, SME

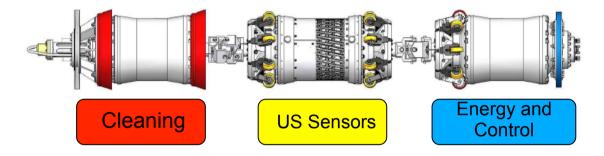
Automatic Details of Descult in Picture Unio Unic Images (Co

SmartEEG (13-...)

Smart Mobile System for ExG Signals Acquisition and Analysis

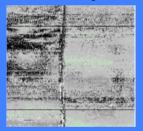
(WP Leader) FUI

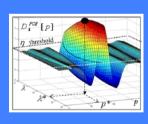
Aymeric Histace - HDR Defense



TRAPIL project

Objectives:


CAD for automated detection of defect signatures in pipelines using Ultrasonics imaging technology


Ultrasonic probes for pipeline inspection

1. Weld detection

[NDT in Progress 12]

- Restoration
- Rupture detection

Ultrasonic Images
[NDT2011,ICNDT13]

2. Default detection and segmentation

EM and Active Contours

[ICNDT13]

3. Pattern recognition
(RF) [ECNDT2014]

Enfoncement
Corrosion
Délaminage
Sousépaisseur

Aymeric Histace - HDR
Defense